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Final Technical Report 

AASERT Grant F49620-96-1-0281 

July 1, 1996 - June 30, 1999 

The AASERT Grant supported two students at Rutgers University, Mr. Dov Chelst 

and Mr. Kevin Rosema. 

Dov Chelst received his Ph.D. in May 1999. The title of his thesis was "Modified 

Two Component Plasmas and Generalizations of Schwarz's Lemma". Dov's thesis dealt 

with statistical mechanics of one dimensional systems with Coulomb interactions. This is 

a problem on which some beautiful analytic work was done a long time ago by Baxter, 

Edwards, Lenard, and others. Their solutions employed an implicit equation involving a 

continued fraction. In addition, Lenard used the analytic theory of continued fractions to 

prove the existence of an implicit solution. However, he did not realize that this theory 

could also be used to prove the analyticity of this solution with the aid of an implicit 

function theorem. 

Chelst thesis extends Lenard's analysis to include a large class of systems so called 

modified two component plasmas. This includes both Coulombic and non-Coulombic types 

of interaction. 

The motivation for this arose from some experimental, numerical and approximate 

analytical calculations in higher dimension. These indicate that Coulomb systems with 

hard cores undergo a rather peculiar kind of liquid-vapor transition. It seemed that it 

would be useful if one could investigate the simpler one dimensional system exactly. This 

Dov has done exceptionally well, adding both short range interactions as well as a long 
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range Kac potential, which induces a liquid-vapor type phase transition in such systems. 

He was then able to show that this transition did not show peculiar behavior in one 

dimension. 

Mr. Chelst has already published one paper on his results (copy attached). Other 

papers resulting from the thesis are now in preparation. A copy of Mr. Chelst's thesis and 

publication will be sent separately. At the present time Dr. Chelst has a teaching position 

at Rutgers University. 

Mr. Kevin Rosema was supported by this grant for the period of one year. He is 

currently continuing his graduate studies and expect to finish at the end of this year. 

His work on the grant involved fluctuations in Coulombic type systems. In particular he 

developed several computer program to obtain systems whose fluctuations are subnormal, 

i.e. grow slower than the volume. This is a characteristic of Coulomb systems and possibly 

other related systems. This work has not been published. 

Appendix A: Three copies of the manuscript: Absence of Phase Transitions in Modified 

Two-Component Plasmas: The Analytic Theory of Continued Fractions in Statistical Me- 

chanics, by Dov Chelst. 

Appendix B: Modified Two Component Plasmas and Generalizations of Schwarz's Lemma, 

by Dov Chelst, Ph.D. Thesis 



Contemporary Mathematics 
Volume 236.  1999 

Absence of Phase Transitions in Modified Two-Component 
Plasmas: The Analytic Theory of Continued Fractions in 

Statistical Mechanics 

Dov Chelst 

ABSTRACT. In 1961, A. Lenard[9] and S. Prager[ll] independently solved the 
one-dimensional two-component plasma. Their solutions employed an implicit 
equation involving a continued fraction. In addition, Lenard used the analytic 
theory of continued fractions to prove the existence of an implicit solution. 
However, he did not realize that this theory could also be used to prove the 
analyticity of this solution with the aid of an implicit function theorem. 

We have extended Lenard's analysis in [3] to include a class of systems 
which we call modified two-component plasmas. Any such system can 
still be described in terms of an implicit continued fraction equation. In this 
paper, we intend to show that such a solution is analytic. Thermodynami- 
cally, this implies the non-existence of pressure-dependent phase transitions, 
i.e. transitions between two phases that occur as pressure P and density p 
vary while the inverse temperature ß remains fixed. 

1. Introduction: Statistical Mechanics, Phase Transitions and 
One-Dimensional Systems 

It is not our intent to develop new theorems regarding the convergence or 
analyticity of continued fractions. Rather, we intend to apply well-known theorems 
(Theorems 6 and 7) to tackle a problem in statistical mechanics. Thus, this paper 
will contain no new results for continued fractions, just a new application. However, 
we believe this application to be quite significant. 

What is statistical mechanics? Statistical mechanics studies systems containing 
a large number of particles. These particles obey a set of microscopic dynamical 
laws. Starting from microscopic particle interactions, such as pair potentials, one 
seeks to derive expressions for thermodynamic macroscopic quantities such as the 
pressure P, as functions of the inverse temperature ß and particle density p. Within 

1991 Mathematics Subject Classification. Primary 82B23, 82D10; Secondary 82B05, 82B26, 
30B70. 
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I would also like to thank Prof. Eugene Speer for discussing the details of this paper's main 

argument with me and for scrutinizing my earlier drafts. 
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138 DOV CHELST 

this theory, these thermodynamic quantities correspond to either averages or sums 
over a tremendous number (e.g. 1020) of microscopic variables. The large number 
of particles is responsible for the statistical nature of the theory. 

While developing a thermodynamic portrait of a given system, one naturally 
asks if it exhibits a phase transition. A collection of particles can behave in different 
ways: like individual molecules (a gaseous state), like a loosely bound conglomerate 
(a liquid state), or like a more rigidly bound molecular lattice (a solid state). The 
question yet remains: for a given system, do clear demarcations exist between these 
different states? Do they represent distinct phases of matter? 

A phase transition is characterized by an abrupt change. For example, when 
we increase the pressure on a gas, while maintaining its temperature, its molecules 
may condense to form a liquid. Thus, at a specific pressure, a sudden change in 
density would occur. Up to this point, the pressure and density would continuously 
increase upon the gas. 

To describe this behavior mathematically, we have a fundamental thermody- 
namic relation which describes the system as a function of a "complete set" of 
thermodynamic variables. One example of such a relation is the average entropy 
per particle s(e,p) which depends upon the mean energy per particle e and the 
particle density p of a system. Another formulation, the chemical potential (or 
Gibbs potential) p(P,ß), which gives rise to this article's continued fraction, de- 
pends explicitly upon a system's pressure P and inverse temperature ß. All other 
thermodynamic quantities are calculated as partial derivatives of this fundamental 
relation. For example, the density p of a system for some P and ß is related to p 

by 
1 _dp(Pß) 

W p OP     ' 

1/pl l/p2 1/P 
A phase transition can be defined as a discontinuity in one of //'s derivatives. 

For example, in the above diagram, a liquid-vapor phase transition of van der 
Waals type can be described by the non-differentiability of a pressure-density curve 
(isotherm). Below a critical temperature, there is a certain pressure which cor- 
responds to two distinct densities pi and p2, representing matter in two different 
phases. For any intermediate value of the density, each phase occupies a propor- 
tional fraction of the system's total volume. At either end of this interval along the 
isotherm, the curve has a discontinuity in its first derivative, i.e. a first-order phase 
transition. 

While one can often prove that a physical system exhibits thermodynamic 
behavior, one can rarely calculate its fundamental relation exactly based solely 
upon the knowledge of its microscopic interactions. Thus, to obtain exact results, 
one needs to examine idealized models.  One such idealization involves restricting 
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the analysis to one rather than three dimensions. In one dimension, a number of 
models have exact solutions. 

Rigorous proofs for the non-existence of phase transitions are another rare 
commodity in statistical mechanics. These theorems, when they exist, focus on 
showing that some fundamental relation describing a given system is analytic. In 
one-dimension, the most famous non-existence proof certainly follows this line of 
reasoning. In 1950, Van Hove[5] showed that one-dimensional systems with only 
finite-neighbor interactions exhibit no phase transitions. 

Plasmas, which consist of charged particles, interact via a long-range Coulomb 
interaction and are not covered by Van Hove's theorem. Nevertheless, in 1962, 
Lenard and S.F. Edwards[4] showed, by analyzing the eigenvalues of a differential 
equation of Mathieu type, that the one-dimensional two-component plasma can 
exhibit no phase transitions.1 This was proven in a way that avoided the continued 
fraction which featured so prominently in Lenard's original thermodynamic solution 
of the system. 

We can readily generalize the original thermodynamic argument of [9] to include 
modified two-component plasmas.2 One simply notes that Lenard and Prager's 
original argument uses a Laplace transform technique reminiscent of the solutions 
of Tonks and Takahashi for systems with only hard-cores or with only nearest- 
neighbor potentials respectively.3 Then, one replaces Lenard's Laplace transform 
of the identity with a more complicated Laplace transform. However, it is not clear 
how to generalize Lenard's second argument, that proved the non-existence of phase 
transitions, in so broad a fashion. Luckily, this is not necessary. 

2.  Modified Two-Component Plasmas 

When expressing the thermodynamics of this model, we fix ß and the unit 
charge a. Thus, in order to focus upon the crux of the argument and eliminate 
distracting notation, we set a = 1 and ß = 1. We therefore intend to suppress all 
dependence upon these variables, totally ignoring them in all but two places: at 
the ends of Sections 4.3 and 4.4. 

+          +       +   +            -++--- 
• • • • • •-• • • •-> 

0 
Modified two-component plasmas contain an equal number of positively and 

negatively charged particles with unit charges +1 and — 1 respectively. Each particle 
resides on the positive half line, and is specified by a pair of coordinates (a,,a;,) 
describing its charge and position. Pairs of particles interact via a one-dimensional 
Coulomb potential 

When considered in three-dimensional space, we view these particles as parallel 
"charged sheets" that lie perpendicularly to the x-axis and each of which has a 
"charge density" a^. 

1In fact, he proved it for more general multi-component charged systems satisfying certain 
conditions. 

2The entire argument can be found in [3]. 
3See [13, pp.48-53]. A translation of Takahashi's original article can be found in [10, p.25]. 
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In addition, nearest-neighbor particles, separated by a distance x, interact via 
a potential ip{x). This potential may depend upon the relative charges of the two 
particles. In this case, we refer to two potentials, ipaame and ipopp, as the interactions 
between neighboring pairs of ions with the same charges and with opposing charges 

respectively. 
The total potential energy H of this system in a given configuration is just 

the sum of all the pair potentials. Using H, for a fixed pressure P, we employ a 
statistical ensemble especially suited to one-dimensional calculations, the isobanc- 
isothermal ensemble4, to determine the fundamental relation /i{P) exactly. That is 
all we will say about the basic description of modified two-component plasmas and 
their statistical mechanical calculations. A full derivation of p(P) can be found in 
[3]. We will now proceed to the fruits of this analysis. 

3. Thermodynamic Results: The Real and the Complex 

The chemical potential fi of a modified one-dimensional two-component plasma 
is related to the implicit solution of the equation 

(2) Q{P,z) = l, 

for positive P. Specifically, the implicit function z*(P) defined to be the solution 
of smallest modulus of (2) for fixed P > 0, is related to \i by 

(3) z*(P) = e2"<p>. 

Through this relation, we will show that p(P) is an analytic function of P. 
Before we can examine z* we need more information about Q. Q can be 

described in two ways: 
1. Power Series: Initially, for fixed P > 0, we define Q as a power series in z 

about 0, 
oo 

(4) Q(Pz) = J2Qn(P>n- 
n=l 

Each coefficient QN{P) is the result of a statistical calculation involving 
a modified two-component plasma with 2N particles using the isobaric- 
isothermal ensemble. As a consequence, each coefficient is a Laplace trans- 
form of a nonnegative function5, whose integral converges for all positive 
pressures P and hence for all complex P with positive real part. Our main 
concern is that it is positive for all positive P. 

2. Continued Fraction: Later in [3], we show that after imposing a few 
conditions and employing a recursive analysis, a modified two-component 
plasma's Q can be described by a continued fraction whose partial numera- 
tors and denominators are functions of P and z. 

The first description shows us that when P > 0, and z > 0 is within the radius 
of convergence about 0, Q(P, z) and ff are positive. The second description allows 

us to fully utilize complex analytic machinery. With it, we can show that Q is a 
meromorphic function of both P and z. We will see that Q's continued fraction is 

4See Percus[8] for a discussion of this ensemble. 
5QN(P) corresponds to a portion of the isobaric-isothermal partition function and is thus a 

Laplace transform of some portion ZN{L) > 0 of the canonical partition function. 
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well-defined when P is restricted to some appropriate open set Oc containing the 
positive reals K+, while z is allowed to range over all C. 

The continued fraction describing Q can be written in the standard form 

(5) Q(P,Z)=K(£ 

When ip is charge-dependent, the partial numerators and denominators are quite 
complicated: 

(6) I 
an = -z©(P + n2), 

bo = ^(p)*E(P+l),and 

kK = Vopp(P + n2)-z S(P +(n+ l)2). 

Each T] is the reciprocal of a Laplace transform: 

-^-j-r = C{e-0—)(s), -i- = C(e-^)(s), and —?- = -±— + —L^. 
VsarneiS) Vopp{S) Vavg(S)        T]same(s)        r)opp(s) 

E and 0 depend upon r]opp and i)„e through the relations 

(7) ew = (^)'-"dS-^w<1-«<•»■ 
When ip does not depend upon the neighboring particles' charges, this descrip- 

tion simplifies drastically. ipopp, ipsarne and ipavg all become equal, while 0 = 1 and 
S = 0. Hence, 

(8) 

01 = W)z> 
On = -Z, 

bo = 0, and 

Un = r?(P + n2) 

The fact that the description of these continued fractions hinges upon the 
reciprocal of a Laplace transform, coupled with the desire to have the continued 
fraction description remain valid for all positive P, motivates us to stipulate the 
following condition for ip. 

CONDITION 1. The Laplace transform £(e-^)(P) determined by any nearest 
neighbor potential rp describing a modified two-component plasma will converge for 
all positive P and hence in the complex right half plane M0 = {z : $l(z) > 0}. 

This condition is not specific to modified plasmas; it is implicit in the standard 
thermodynamic description of pure nearest neighbor systems solved by Takahashi[10, 
p.25]. Thus, Condition 1 is imposed, implicitly or explicitly, on many systems con- 
taining nearest-neighbor potentials. 

Of course, we must now convince a reader that the reciprocals of Laplace trans- 
forms, the 7?'s, are well-defined for appropriate values of P. In other words, we need 
to show that the Laplace transforms are non-zero. Only then can we show that the 
continued fractions given by (6) and (8) converge. We will explore the properties 
of Laplace transforms which make each r\ well-defined in Section 4.3.2. 
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4. The Analyticity of p(P) 

4.1. The Main Result. Now, we will state our main theorem and prove it 
assuming Lemma 3 that we will prove in Section 4.4. 

THEOREM 2. Let a nearest-neighbor potential ip satisfy Condition 1. When ip 
is charge-dependent, let it satisfy Condition 8. Let Q{P, z) be a function that can be 
described both as a continued fraction (6) and as a power series (4) for fixed P > 0 
in z about 0 with positive coefficients. Then the implicit function ß{P) defined via 

(2) and (3) is analytic for P > 0. 

4.2. Proof of Theorem 2. To prove Theorem 2, we must traverse a number 

of steps. 

PROOF. 1. First, we state the lemma: 

LEMMA 3. IfQ(P,z) satisfies the hypotheses of Theorem 2, then Q is 
a separately meromorphic function of P and z for all (P, z) € Oe x C 
for some appropriate open subset Oe of C containing K+. 

While we leave the proof of Lemma 3 to Section 4.4, we would like to 
describe its conclusion and give an idea of its proof here. Specifically, we 
show that if we fix one variable, and examine a neighborhood about any 
value of the other variable, there is an appropriate fcth remainder of the 
continued fraction, K(an+k/bn+k), which is analytic in that neighborhood. 
Thus, the full continued fraction is a rational function of the first k partial 
numerators and denominators and the remainder term. Since these are all 
analytic functions of the free variable, Q must be a meromorphic function 

of the free variable. 
This argument utilizes two theorems from the analytic theory of contin- 

ued fractions quoted in Section 4.4 as Theorems 6 and 7. At the same time, 
it relies heavily upon the asymptotic behavior of Laplace transforms de- 
scribed in Section 4.3. It is not suprising that for a charge-dependent system, 
we need an extra condition, given in Section 4.4 as Condition 8, to apply 
these continued fraction theorems. A charge-independent system does not 
require this additional condition; yet, when tp assumes the proper form, it 
automatically satisfies Condition 8. 

2. An extension of Hartogs' Theorem to meromorphic functions due to W. 
Rothstein[12] states that a separately meromorphic function, e.g. Q, in an 
open complex domain, e.g. öe x C, is actually jointly meromorphic. Thus, 
Q is jointly analytic in a neigborhood of any solution to (2). 

3. Moreover, we note that the power series description (4) of Q implies that 

|£ is non-zero about any solution to (2) provided that both coordinates 

are positive and z lies in the radius of convergence of Q. Together with the 
meromorphicity of Q, this assures us that for P > 0, Q's first pole away from 
zero occurs on the positive real axis. It also guarantees that, for positive P, 
a unique positive solution z{P) exists within this radius of convergence 
and that this solution has the smallest modulus of all solutions to (2). Thus, 
this solution is actually z*(P). 

4. We may now employ the complex analytic implicit function theorem[6, 
1.B.6] to prove that z*(P) is an analytic function of P. Let us briefly review 
the implicit function theorem. 
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THEOREM 4 (Implicit Function Theorem). Let f : U -» C be a jointly 
analytic function in some open domain U C Cn. In addition, let f(x, z) = 0 
for some (x, z) e U, and -£ (x, z) ^ 0. Then there exists a neighborhood U' 
about x and an analytic function g : Cn_1 —» C such that f(x,g(x)) = 0 and 
(x,g(x)) e U for all x e U'. 

This theorem applies to our situation when we replace / by Q — 1. Since 
/ is meromorphic, it is automatically analytic in a neighborhood of any point 
that is not a pole of / which includes any point where / = 0. Thus, by the 
implicit function theorem, z*(P) is analytic in an appropriate neighborhood 
of P. 

5. Since P > 0 was chosen arbitrarily, z*{P) must be analytic for all positive 
P. The fact that the solution of smallest modulus z*{P) is always real 
and positive makes this global result possible. Normally, given two analytic 
implicit solutions zi{P) and z2(P) to a single equation, a situation might 
arise in which z\ would have the smaller modulus for some values of P while 
Z2 would have the smaller modulus for other values of P. The fact that the 
solution z*{P) of smallest modulus is always positive implies that for such 
a switch to take place Z\(P) and z2{P) must coincide for some value of P. 

By the assumptions of the implicit function theorem, namely that ^ ^ 0, 
this cannot occur. 

6. The fact that z*(P) is analytic and positive allows us to conclude that 
ß{P) = \ \n(z*(P)) is also analytic in P. 

D 

4.3. Three Features of Laplace Transforms. As Q is defined in terms of 
Laplace transforms, we should review their relevant features. More specifically, we 
list three features of Laplace transforms. The first is satisfied for any function with 
an absolutely convergent Laplace integral. The second is specific to transforms 
of nonnegative functions (that are not identically zero), which is certainly true in 
our case as e~^ is never negative. The third holds true only for an even more 
specific situation; this is meant to serve as an example of a Laplace transform's 
leading-order asymptotics. 

4.3.1. Limiting Behavior. If the Laplace transform of a function /, £(/)(s) = 
Jo°° f(t)e~stdt converges absolutely for some s, it is analytic and defined for all P in 
some open right half plane Mw = {s : 5R(s) > w}. In addition, lim3}(s)^00 C(f)(s) = 
0. In our situation, by the assumptions of Condition 1, C{e~^){s) is defined in H0 

and for s € Ot C H0, lim^oo \n(s + n2)\ = oo. 
4.3.2. Transforms of Nonnegative Functions and Their Zeros. For a nonneg- 

ative function / that converges in H0, this limiting behavior is monotonic for real 
P. In addition, for complex s, |?7(s)| > 7j(Sft(s)). Moreover, if / is nonnegative and 
not identically 0, we can be sure that n is well-defined in some neighborhood Ö 
containing M+. After all, C(f)(s) is analytic in H0 and strictly positive on R+. 

Unfortunately, this does not suffice. It is necessary to find a complex neighbor- 
hood Oe, containing M+, in which £(/)(s) and C(f)(s + n2) are nonzero for all n. 
We will prove that there exists a neighborhood Oe containing R+, on which £(/) 
is nonzero, and which has the property that s£0e implies s + 5 £ Oc for all S > 0. 
In other words: 



!44 DOV CHELST 

LEMMA 5. Let £(/) be a Laplace transform of a nonnegative function f that 
converges for all P G H0. If f is not identically zero, then the zeros of £(/) are 
bounded away from R+ in any half-plane Ux for x > 0. 

PROOF. We will show more than the lemma requires. We will show that the 
zeros of the real part of £(/) are also uniformly bounded away from the positive 
real axis in Mx for any x > 0. Given the original function / and a positive real 
value x, pick some e < \. Now, by simple convergence arguments, one can choose 

a constant K so that jf f{t)e~xtdt > 0 and 

/    f{t)e-xtdt < e /    f{t)e~xtdt. 
JK JO 

Then, for all si > x, 
/■oo r°° fK 
/    f{t)e~^dt < e-^~^K /    f(t)e-xtdt < ee~^-x)K /    f{t)e~xtdt 

JK JK JO 
fK 

< e /    f{t)e-Sltdt. 
Jo 

Now, simply choose w > 0 so that wK < f. For all real values |s2| < ^ and 
0 < t < K, cos s2* > ^ and for complex s = s\ + is2 in the complex strip Sx = {s : 
SR(s)>x,|5(s)| <w}, 

■dt «{£(/)(*)}=/    f (t) cos s2te-^dt>-        f(t)e-^dt-        /(t)e-1 

Jo z Jo J^ 

-G~e)i*/(i)e~si*dt>o- 
The proof is complete when we note that since Sx contains no zeros of £(/), the 
Laplace transform's zeros must all remain at least a distance w > 0 away from R+ 
inHx. D 

Before we continue, we simply construct an open set using the conclusion of 
the previous lemma. Given a suitable nonnegative function / and a positive e < 5, 
define the "zero-less" open set Oe = Ux>0 sx- Thus, because £(/) has no zeros and 
is analytic in Oe, we are assured that 77 is well-defined and analytic there as well. 

Finally, we note that this lemma completes a pair of inequalites. For any 
seOe, 

(9) |£(/)(*)| < £(/)(»(*)) < \^\C(f)(s)\- 
2     e 

4.3.3. Leading Order Asymptotics of C(f) - Watson's Lemma. While it is not 
completely necessary, the inequality (9) allows us to consider the complex asymp- 
totic behavior of C(f)(s) as SR(s) -> 00. While the limit of £(/) is certainly an 
asymptotic feature, in a charge-dependent modified plasma system, where two 
Laplace transforms play a role, we need a clearer understanding of £(/)'s asymp- 
totic behavior. 

Toward this end, we make a large assumption about /. Every nonnegative func- 
tion has a set /_1((0,00)) G E+ of points where / is positive. For a function / that 
has a right-handed limit near the smallest point p in this set's closure, £(/)(s)'s 
asymptotic behavior for large SR(s) depends very strongly upon this limit. Watson's 
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Lemma[2, 6.4] covers a number of possible limiting behaviors. While this does not 
exhaust all possible functions, nor does it include all physically meaningful func- 
tions6, we will restrict ourselves to those potentials covered by Watson's Lemma. 
An industrious reader will see that those generalizations of Watson's Lemma that 
are also found in [2] can be treated similarly. 

Watson's Lemma states that if a function / behaves as Ata to leading order as 
t —> 0+, for some constants A and a > 0 and if £(/) converges in some M.x, then 
the Laplace transform C(f)(s) decays as 3?(s) —> oo, to leading order, like wfeW- 
(r is the Gamma function which for positive integers n satisfies T(n + 1) = n! and 
using Euler's integral can be written as T(x) = /0°° t*-1^* dt.)This is certainly true 
for real s and the statement for complex s follows from (9). 

In statistical mechanics, we frequently encounter potentials i\> that contain hard 
core exclusions. In terms of / = e_/3^, a hard core specifies that /(£) = 0 for all 
t < b for some hard core diameter b. If, in addition, as t —> b+, f behaves as 
A(t - b)a for some constants A and a > 0, its Laplace transform C(f)(s) decays, 

to leading order, as yir(^|s
1
)
)
Q

e
+1 ' . This follows from Watson's Lemma and an 

elementary feature of Laplace transforms that can be found in any undergraduate 
text on the subject. The reciprocal of £(/) in either of these two situations, 6 = 0 
or b ^ 0,diverges to infinity in an appropriate manner. 

We note that while Watson's Lemma also allows for -1 < a < 0, a physical ar- 
gument disallows these exponential values. After all, since / = e~^, our exponent 
a depends linearly upon the inverse temperature /?. Thus, while for some values 
of /?, 0 > a = a'ß would be greater than -1, there would certainly be values of ß 
for which this would be false and thus the Laplace transform would not even exist. 
This contradicts Condition 1 that we imposed upon our nearest-neighbor potential 
ip in Section 3. 

This section on Laplace transforms provides all that we need in this paper. 
It furnishes analyticity criteria. It gives a complex open set in which all 77's are 
well-defined, i.e. just the finite intersection of open sets for each separate 77. It also 
provides the asymptotic information regarding our 77's that allows us to apply our 
continued fractions theorems. 

4.4.  The Meromorphicity of Q. 

PROOF OF LEMMA 3. As stated in the proof of Theorem 2, our aim is to show 
that some remainder of the continued fraction Q is separately analytic in Oe x C; 
i.e. analytic in a single variable while the other remains fixed. For this purpose, we 
employ two theorems found in chapter 4 of the book by Thron and Jones [7, Thms. 
4.35 and 4.54]. Note that fn refers to the nth convergent of the continued fraction 
whose value we can obtain by substituting 0 for an+\. 

THEOREM 6 (Pringsheim). If \bn\ > \an\ + 1 for all n, then 

i. K ( jf- J converges, and 

ii-  |fn| < 1 for all n. 

sTry e   v* from a potential ip{y) = ^. 
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THEOREM 7. If: 

i. an{x), bn(x) are analytic in some domain D, and 
ii. 3£i,6 e C, s.i. for all xe D andn£l+, f„(x) £{£1,62,00}. 

T/iera K (f^jf}) «« analytic in D. 

We first note that all the partial numerators and denominators described in (6) 
and (8) are analytic functions of P and z. In ö€, both rjopp and rjsame are nonzero 
and hence their ratio is an analytic function. Thus, 0 and S are both analytic 
functions of P. Analyticity in z is even more obvious. 

Now, consider Q(P) and S(P) defined in (7). By the asymptotic behavior of 
the two 77's, according to Watson's Lemma, 

2(aopp + l)   2boppso „, s   ... , x 
\Q(S)\      „     C^   = C  2(«oPP-«.»m«)e2(6.PP-6.-m«)«0)and 

s0 e 
|^/_\|        ^ 7-J    «opp-2asamee(6t,pp-26same)S0 

for some constants C and D when s is in Oe and s0 = 3?(s). 
Since H(s) can never grow asymptotically larger than 9(s), if we wish to prove 

that bn is eventually bigger than a„ we must focus on its other term, r)opp{P + n2) 

which grows like As%opp+1eb°™s° with s0 = 5R(P) + n2. For this to grow more 
quickly than its competing partial numerator, we impose the following condition. 

CONDITION 8. Let ip be a nearest-neighbor interaction within a modified two- 
component plasma. Moreover, let f(t) = e^w have the form f(t) = 0 for t < b 
and f(t) ~ A(t - b)a as t -+ 6+ for some nonnegative values 6 and a. Then, we 
require that 

i- bopp s 2osame, ana 
ii. if 6Qpp = 2bsame, that a0pp < iOsame- 

If this condition holds, we are assured that eventually bn will grow asymptoti- 
cally larger than an and the conditions of Pringsheim's lemma (Lemma 6) will be 
satisfied. After all, whether we fix P or z, the real part of P + n2, that replaces s 
from the previous discussion, goes off to infinity and our asymptotic analysis holds. 
The second lemma will automatically follow if we choose any two complex numbers 
£1 and £2 with modulus greater than 1.  Consequently, Q(P,z) is meromorphic in 
Ot xC. 

D 

REMARK 9. We would like to point out that charge-independent systems do 
not require the additional condition stated above. If one examines their partial 
numerators in (8), one notices that they remain fixed as n increases. Conversely, 
the partial numerators grow asymptotically large regardless of the special form of 
e~*. Thus, both lemmas provide their conclusions effortlessly. 

REMARK 10. In addition, while we have not ruled out temperature-dependent 
phase transitions, it is possible that a similar analysis will preclude their existence 
as well. Paying attention to the inverse temperature ß merely involves replacing 
p + n

2 by ß(P + n2) in 77's arguments and switching the transformed function from 
&-* to e~^. The dependence upon ß that arises from multiplying the arguments 
of 77 by ß can be treated in exactly the same manner that we treated P above. Only 
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the ß which figures in the definition of the transformed function itself e~ß^ could 
prove problematic. 

In certain simple instances, e.g., when ip = 0 or when ip is a pure hard core 
exclusion, temperature-dependent phase transitions are also absent. In those situ- 
ations, C(e~^) depends on ß only through its argument ß(P + n2). Thus, in these 
instances, the line of reasoning described in this paper applies to ß as well. 

5.  Conclusion 

We have accomplished our goal of utilizing the theory of continued fraction to 
prove a fact regarding modified two-component plasmas. Of course, some questions 
remain unresolved. Did we use this theory effectively? The theorems employed 
provided sufficient conditions preventing the existence of phase transitions in these 
systems. But, how necessary is the additional condition imposed upon plasmas with 
charge-dependent nearest neighbor interactions. What happens if bopp > 2bsame? 

Continued fractions may yet hold the answer to this question. Continued frac- 
tions continue to persist in many models related to the two-component plasma. 
They appear explicitly in the discussion of one-dimensional ion-dipole systems in 
[15]. Moreover, they are implicit in every article that calls upon the reader to calcu- 
late an eigenvalue of a Mathieu-type differential (differential-delay) equation with 
periodic boundary values.7 For these reasons, we believe that continued fractions 
will continue to provide valuable information regarding this family of statistical 
models. 
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